Persistent Identifier
|
doi:10.18130/V3/DXWOS5 |
Publication Date
|
2024-05-11 |
Title
| Cell Maps for Artificial Intelligence - Data Release |
Author
| Clark, Timothy (University of Virginia) - ORCID: 0000-0003-4060-7360
Schaffer, Leah (University of California, San Diego) - ORCID: 0000-0001-6339-9141
Obernier, K (University of California, San Francisco) - ORCID: 0000-0002-4025-1299
Al Manir, Sadnan (University of Virginia) - ORCID: 0000-0003-4647-3877
Churas, Christopher (University of California, San Diego) - ORCID: 0000-0001-9998-705X
Dailamy, A (University of California, San Diego) - ORCID: 0000-0002-6711-8260
Doctor, Y (University of California, San Diego) - ORCID: 0009-0009-0483-7506
Forget, A (University of California, San Francisco) - ORCID: 0000-0003-0223-0312
Hansen, JN (Stanford University) - ORCID: 0000-0002-4650-9094
Hu, M (University of California, San Diego) - ORCID: 0000-0002-1571-8029
Lenkiewicz, J (University of California, San Diego) - ORCID: 0000-0001-7252-8638
Levinson, MA (University of Virginia) - ORCID: 0000-0003-0384-8499
Marquez, C (University of California, San Diego) - ORCID: 0000-0003-3960-420X
Mohan, J (University of California, San Diego) - ORCID: 0000-0003-4535-3486
Nourreddine, S (University of California, San Diego) - ORCID: 0000-0003-3881-7588
Niestroy, J (University of Virginia) - ORCID: 0000-0002-1103-3882
Pratt, D (University of California, San Deigo) - ORCID: 0000-0002-1471-9513
Qian, G (University of California, San Deigo) - ORCID: 0009-0005-4217-2745
Thaker, S (University of Alabama at Birmingham) - ORCID: 0000-0001-6730-2773
Belisle-Pipon, J-C (Simon Fraser University) - ORCID: 0000-0002-8965-8153
Brandt, C (Yale University) - ORCID: 0000-0001-8179-1796
Chen, J (University of Alabama at Birmingham) - ORCID: 0000-0002-6112-415X
Ding, Y (University of Texas at Austin) - ORCID: 0000-0003-2567-2009
Fodeh, S (Yale University) - ORCID: 0000-0003-4664-3143
Krogan, N (University of California, San Francisco) - ORCID: 0000-0003-4902-337X
Lundberg, E (Stanford University) - ORCID: 0000-0001-7034-0850
Mali, P (University of California, San Deigo) - ORCID: 0000-0002-3383-1287
Payne-Foster, P (University of Alabama) - ORCID: 0000-0002-3508-3577
Ratcliffe, S (University of Virginia) - ORCID: 0000-0002-6644-8284
Ravitsky, V (University of Montreal) - ORCID: 0000-0002-7080-8801
Sali, A (University of California, San Deigo) - ORCID: 0000-0003-0435-6197
Schulz, W (Yale University) - ORCID: 0000-0002-2048-4028
Ideker, T (University of California, San Deigo) - ORCID: 0000-0002-1708-8454 |
Point of Contact
|
Use email button above to contact.
Clark, Timothy (University of Virginia) |
Dataset Description
| This collection is the 0.5 alpha data release of the the Cell Maps for Artificial Intelligence (CM4AI) Functional Genomics Data Generation Project, a component of the U.S. National Institute of Health’s (NIH) Bridge2AI program. CM4AI’s objective is to deliver machine-readable hierarchical maps of cell architecture as AI-Ready data produced from multimodal interrogation of 100 chromatin modifiers and 100 metabolic enzymes involved in cancer, neuropsychiatric, and cardiac disorders in disease-relevant cell lines under perturbed and unperturbed conditions, utilizing state-of-the-art mass spectrometry based proteomics, spatial proteomics / cell imaging, and genetic perturbations using CRISPR. CM4AI input data streams are generated using immunofluorescence (IF) subcellular microscopy for spatial proteomics data; affinity purification mass spectroscopy (AP-MS) and size exclusion mass spectroscopy (SEC-MS) methods for protein-protein interaction (PPI) data; and single-cell CRISPR-Cas perturbation screens by cell type. Input data streams are integrated via the multi-scale integrated cell (MuSIC) software pipeline employing deep learning models and community detection algorithms2, and output cell maps are packaged with provenance graphs and rich metadata as AI-Ready datasets in RO-Crate format using an extended, client-server version of the FAIRSCAPE framework. This data is Copyright (c) 2024 The Regents of the University of California except where otherwise noted. Spatial proteomics raw image data is copyright (c) 2024 The Board of Trustees of the Leland Stanford Junior University. It is licensed for reuse under Creative Commons Attribution ShareAlike NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/). Attribution is required to the copyright holders and the authors. Any publications referencing this data or derived products. should cite the related article as well as directly citing this data collection. |
Subject
| Medicine, Health and Life Sciences |
Related Publication
| Clark T, Schaffer L, Obernier K, Al Manir S, Churas CP, Dailamy A, Doctor Y, Forget A, Hansen JN, Hu M, Lenkiewicz J, Levinson MA, Marquez C, Mohan J, Nourreddine S, Niestroy J, Pratt D, Qian G, Thaker S, Belisle-Pipon J-C, Brandt C, Chen J, Ding Y, Fodeh S, Krogan N, Lundberg E, Mali P, Payne-Foster P, Ratcliffe S, Ravitsky V, Sali A, Schulz W, Ideker T. Cell Maps for Artificial Intelligence: AI-Ready Maps of Human Cell Architecture from Disease-Relevant Cell Lines. BioRXiv 2024. |
Language
| English |
Data Creation Date
| 2024-05-10 |
Funding Information
| NIH: https://reporter.nih.gov/project-details/10473403 |
Depositor
| Levinson, Maxwell |
Deposit Date
| 2024-05-10 |